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ABSTRACT

The two-way flexural behavior of steel-deck-reinforced con-

crete slabs is exaonined and the feasibility of considering two-way

action in the design of such slabs is discussed. An elastically

orthotropic finite element model with uniform thickness is developed

which simulates the behavior of a structurally orthotropic steel-

depk-reinforced concrete slab. The model development is based upon

appropriate modifications to the elasticity constants and to the

thickness of the plate bending element included in the SAP IV

finite element program. The linear, elastic, uncracked behavior of

a typical steel-deck-reinforced concrete slab is examined utilizing

the elastically orthotropic model; and, the resulting deflections

and moments are observed to conform with theoretical results and

with a more sophisticated structurally orthotropic model. The

elastically orthotropic finite element model is also correlated with

previously tested steel-deck-reinforced concrete slabs and the

results predicted by a finite element analysis are found to conform

with the actual test results in the uncracked region.

The results of a limited parametric study, which considers

the relative effects of aspect ratio, rib span direction, and edge

support conditions on two-way flexural behavior, are presented.

Deflections and bending moments for two-way flexural action are

compared with similar values for one-way bending and an expression

is proposed for computing an optimum aspect ratio for a given ortho-

tropic steel-deck-reinforced concrete slab.





Although the analysis in this report is based upon several simpli-

fying assumptions, the two-way design of steel-deck-reinforced concrete

slabs is nevertheless found to be a feasible and potentially advantageous

concept

.





1. INTRODUCTION

Cold-formed steel decking, as shown in Fig. 1(a), is extensively

utilized in the construction of floor systems for steel framed buildings

and often serves the dual function of providing forming for concrete

during slab construction and positive reinforcement for the floor slab

under service conditions. In addition to simplifying forming and

reducing reinforcing steel, such a floor system also provides a safe

working platform during construction; can easily accommodate pre-

engineered raceways for electrical, communications, and air distribution

systems; and, upon completion, presents a finished underside with no

visible cracks. However, steel-deck-reinforced concrete slab systems

are generally heavier and thicker than alternate floor systems, such as

flat plate concrete slabs (Fig. 1(b)), and despite numerous advantages,

their general application is often limited by both technical and

economic considerations. Such limitations are directly linked to the

method of one-way flexural analysis utilized in the conventional

design of steel-deck-reinforced concrete floor systems. Reinforced

concrete floor slabs, on the other hand, are routinely analyzed as

two-way flexural systems to achieve overall economy of design. The

two-way flexural behavior of steel-deck-reinforced concrete slabs will

be examined in this report and the feasibility of designing such slabs

to take advantage of two-way flexural action will be discussed.





1. L Current Practice

Although steel deck floor systems generally result in a

thicker "floor sandwich" than flat plate concrete floor systems,

they are usually much easier to install, and, in particular, they

provide additional flexibility for the installation of under-floor

utility systems. Consequently, steel-deck-reinforced concrete floor

systems can often be economically utilized in commerical facilities,

office buildings, or hospitals. However, they are less economical

for residential facilities such as apartment buildings, hotels, or

dormitories which have fixed interior partitions and do not depend

upon the floor system for installation of utility lines. The

overall cost of high-rise buildings is particularly sensitive to the

overall thickness of the "floor sandwich" and facilities which do

not require mechanized or electrified floor systems can often be

more economically constructed utilizing precast concrete floor

panels or flat plate concrete slabs.

Steel decking is often utilized strictly as stay-in-place

forming material and alternate reinforcing is provided for the

concrete slab. Steel-deck reinforced concrete floor slabs, however,

are composite structural systems which achieve satisfactory composite

action by developing positive interlocking between the steel deck

and the concrete. Steel decks are currently manufactured which

utilize various patterns of embossments to mechanically transfer

horizontal shear and to prevent vertical separation between the deck

and the concrete. The load carrying capacities of such composite





sections are normally established through proprietary performance

tests conducted by the various manufacturers, and design is general-

ly based upon one-way bending of simple span slabs. However, a

flexural mode of failure is rarely achieved for typical sections

spanning moderate (6-12 ft) lengths, and design is often governed by

other criteria such as shear-bond failure, allowable deck stresses

during construction, or acceptable deflections during construction or

service loading. Additionally, the thickness of steel deck floor

systems may also be governed by required fire resistance ratings.

The various steel-deck manufacturers generally recommend maximum

one-way spans in the range of 15 feet for steel-deck-reinforced con-

crete slabs. However, spans of 6-10 feet are more commonly utilized

so as to obviate the need for expensive temporary shoring and to

minimize the depth of supporting members. As mentioned earlier, a

steel deck floor system, with its associated beam/joist framing system

will generally result in a relatively thicker "floor sandwich" than a

concrete flat plate or pre-cast floor system. However, in commercial

facilities requiring extensive underfloor utility systems and mechanized

or electrified floors, cellular steel deck, in particular, can provide an

alternative, economically feasible floor system when constructed com-

positely with the concrete slab.





1.2 Current Research

Extensive research on steel-deck-reinforced concrete slabs

subjected to one-way bending has been conducted at Iowa State Univer-

sity by Ekberg, Schuster, and Porter. » ' > -' Test results have

indicated that the shear-bond failure mode is predominant over the

flexural failure mode, particularly in shorter spans; and, it has

therefore been recommended that such a failure mode should be a

primary design consideration. Shear-bond failure was classified as

a brittle type of failure characterized by the formation of an approx-

imately diagonal crack (resulting from excessive principal tension

stresses) which resulted in end slip and a loss of bond between the

steel deck and the concrete. It was observed that shear-bond capacity

increased with an increase in depth, a decrease in shear span, or an

increase in the compressive strength of concrete. An ultimate strength

design procedure, which incorporates a specified testing program to

establish shear-bond capacity, was proposed for steel-deck reinforced

concrete slabs subjected to one-way bending.

( c.\

Limited research has also been conducted by Porter and Ekberg

on the behavior of steel-deck-reinforced concrete slabs subjected to

two-way bending. Five simply supported slabs (12 ft x 16 ft) with

varying section properties and with ribs spanning 12 feet were sub-

jected to four concentrated loads near the center span region, and

failure mode, cracking pattern and end reactions were observed. All

five slabs failed ultimately by a shear-bond type of failure, character-

ized by horizontal end slippage accompanied by the development of





diagonal cracks. End slippage was similar to that experienced in

one-way slab tests, however no end slip was observed along the edges

transverse to the span of the steel deck ribs.

Although none of the five slabs failed by extensive yielding of

the steel deck, some limited yielding of the steel deck did occur in

the central regions near the concentrated load points. Measured end

reactions indicated that about 787o of the total applied load during the

initial load applications was transmitted in the strong direction.

However, near ultimate load, one-way bending was predominate and 97%

of the total force was carried in the strong direction. Maximum edge

reactions in the weak direction usually occurred when the live load

was 507c, of the ultimate load or at approximately the working load level.

Porter recommended that analysis of steel-deck-reinforced

concrete slabs subjected to two-way bending consider only the section

above the deck corrugations as effective for transverse flexural action.

Moreover, he suggested that only supplementary steel in the transverse

direction be considered for computing flexural capacity and that any

contribution from the steel deck should be neglected. Porter observed

that a slab which had 6x12 D0xD4 WWF placed directly on top of the

steel decking had a higher ultimate load than slabs without such rein-

forcement. It is quite possible that supplementary transverse rein-

forcement increases both shear bond and transverse flexural capacity

and thus increases the overal 1 ultimate capacity of a two-way steel-

deck-reinforced concrete slab. Porter's results are discussed further

in Art. 4.4.





1.3 Purpose and Scope

The desired failure mode of any reinforced concrete structural

system is a flexural failure of an under-reinforced cross section.

Steel-deck-reinforced concrete slab sections commonly utilized in

building construction will predominantly experience shear bond failure

or excessive deflections prior to reaching their ultimate flexural

capacity. Consequently, such sections actually fail prematurely, thus

lowering allowable loadings or reducing allowable span lengths. If all

factors which precipitate failure prior to the achievement of ultimate

flexural capacity could be controlled and a flexural failure realized,

steel decking could be more efficiently utilized as reinforcement for

concrete floor slabs. Moreover, the relative economic benefits of

steel-deck-reinforced concrete floor slabs could be significantly

improved if such slabs were designed as two-way flexural systems.

An elastically orthotropic finite element model with constant

thickness will be developed to facilitate the analysis of structurally

orthotropic steel-deck-reinforced concrete slabs. The elastically

orthotropic model will be compared with theoretical results, with a

more refined structurally orthotropic finite element model, and with

one-way and two-way test results as compiled by Ekberg, Schuster, and

Porter. ' Once validated, the finite element model will be utilized

to conduct a limited parametric study in which the relative effects

of aspect ratio, rib span direction, and edge support condition will be

examined. The general feasibility of designing steel-deck-reinforced

concrete slabs as two-way flexural systems will be discussed;

8





however, it is recognized that much more intensive analytical studies

as well as extensive laboratory tests are necessary to confirm the

findings of this preliminary research. In effect, this report serves

as a "ground level" feasibility study on the two-way flexural behavior

of steel-deck-reinforced concrete slabs.

1.4 Assumptions

The limited scope of this investigation is unavoidably con-

strained by several basic assumptions. Such assumptions will

necessitate careful interpretation of the findings of this study,

but will not invalidate their basic significance. In general, all

analyses have been performed on the basis of linear elastic behavior

of an uncracked cross section. More specifically it has been

assumed that:

a. Additional transverse and longitudinal reinforcement will be

added to the cross section as required to maintain the same

relative uncracked stiffnesses subsequent to cracking as well

as to satisfactorily resist two-way bending moments.

b. Shear bond failure can be prevented prior to flexural failure

by modifying the steel deck profile (embossments), by adding

specialized shear connectors, by applying special adhesive

coatings, or by some other acceptable technique.

c. Excessive deflections and/or construction loadings can be

economically controlled by improved shoring techniques, by

two-way flexural action of the steel deck alone, by pre-cast

construction or by other suitable techniques.





2. FINITE ELEMENT MODEL DEVELOPMENT

The SAP IV finite element computer program provides

several alternative methods for modeling a steel-deck-reinforced

concrete slab subjected to distributed or concentrated loads perpen-

dicular to the plane in which it lies. The plate bending element provides

the most convenient and efficient method for analyzing isotropic

plate bending problems and can readily be adapted to elastically

orthotropic problems by properly populating the plane stress material

elasticity matrix given as follows:

fn
XX

yy

xs

C C C
XX xy xs

C C C
xy yy ys

C C G
xs ys xy

XX

yyi

xy

2.1

where.
XX

xy

c
yy

E

1-v^

vE

l-^P

C =« C =
xs ys

xy 2(l+v)

for the case of isotropic plate bending.

2.2

In isotropic or elastically orthotropic plate bending problems,

the finite element is given a specified uniform thickness and appro-

priate rigidity factors are computed utilizing the specified elasticity

constants. However, a structurally orthotropic steel-deck reinforced

concrete slab, with typical cross section as shown in Fig. 1(a)
(7)
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can not be modeled as conveniently using plate bending elements. On

the other hand, however, alternative models utilizing more sophisti-

cated elements become more complex as well as exponentially more

expensive. Consequently, elasticity parameters were developed which

permitted the modeling of a structurally orthotropic plate as an

elastically orthotropic plate with an equivalent uniform thickness,

and analytical results were compared with results gene rated by a more

sophisticated finite element model as well as with theoretical and

test results.

2.1 Orthotropic Plate Theory

/ON
For engineering applications, an orthotropic plate is defined^ '

as a plate having different bending stiffnesses (D =» EI) in two ortho-

gonal directions X and Y in the plane of the plate. The variation in

bending stiffness may result either from different moduli of elasti-

city E and E in two orthogonal directions, as in the case of natural-
X y

ly or elastically orthotropic plates, or from different moments of

inertia I and I per unit width, as in the case of technically or
X y ^

structurally orthotropic plates.

Ruber's general differential equation for the bending of an

/ON
orthotropic plate is expressed as follows:

B^w ^ 5^w S'^w . .

°x B^ •" 2H ^p^ + D^ = q(^.y) 2.3

where 2H=Dv+Dv+4D 2.4
X y y X xy

The quantities D and D are termed the flexural rigidities of the
X y

plate while D represents the torsional rigidity of the plate. The
xy

^^





value of 2H from Eq. 2.4 is termed the effective torsional rigidity

of the orthotropic plate.

In general terms, Eq. 2.3 relates the plate's deflection

surface w(x,y) to a given load distribution q(x,y). To apply the

solution of Eq. 2.3 to engineering problems, it is necessary to

evaluate proper values for the constants D , D , D , v , and v .
^ ^ x' y' xy x' y

For an elastically orthotropic slab of uniform thickness (h), the

constants are defined as follows:

D

E h°

X 12(l-v V )X y

E h
—I.

3

y 12(l-v V )X y

2.5

G h^

D - -^
xy 12

E V = E V (from Betti's reciprocal theorem)
X y y x

The values of the moduli of elasticity E and E and the corresponding
X y

Poisson's constants v and v are usually known for a given elastically
X y

orthotropic material. However, the value of the shear modulus G , which

is encountered in the expression for the torsional rigidity D , and which
xy

consequently also influences the effective torsional rigidity H, is

usually unknown.

An approximate value of the effective torsional rigidity can

/ON
be theoretically expressed by the equation.

H = /WW 2.6
X y

12





if an analogy is drawn with the expression for the twisting moment

of an isotropic plate utilizing D = /D D and v = /v v as repre-xy xy
sentive "middle values" of the bending rigidity and Poisson' s con-

stant. This approximation is valid only if the orthotropic plate

satisfies the following conditions:

a. uniform thickness

b. purely elastic deformations

c. relatively small deformations.

Because such assumptions are not actually satisfied in reality,

particularly for a structurally orthotropic plate, it has been

/ON
suggested that the value of H should be reduced by a coefficient

of torsional rigidity Yj so that

H = Y ,/d"^ 2.7
x y

where Y < 1 and normally varies between 0.3 and 0.5.

A proper theoretical expression for G is particularly

important when modeling a structurally orthotropic plate as an

equivalent elastically orthotropic plate for a finite element analysis

(9)
Szilard suggests that G for an orthotropic material can be

xy '^

approximately expressed as follows:

/EE

xy 2 ( IV V V )
X y

or if E « E « E
X y

^xy ^ 2(l+/v^r)
^'^

X y

13





In discussing structurally orthotropic steel bridge deck

(8)
systems, Troitsky suggests that G be expressed as follows:

xy

E E
n = 2L_I
xy E + (H-2v )E

X x y

2.10

but recommends that a direct test be conducted to obtain a more re-

liable value for G
xy

The expressions for bending rigidity given in Eq. 2.5 must also

be modified for structually orthotropic plates. For a slab reinforced

on one side by a set of equidistant ribs, Timoshenko suggests that

bending rigidities can be approximated by the following expressions:

E a h°

D ~ ToT m^TZT 2.11
x 12(a -t+or t)

D =— 2.12
y a^

if the effect of transverse contraction is neglected (i.e., v = v =
X y

V = 0). D represents the effective weak direction rigidity transverse

to the ribs, while D represents the strong direction rigidity parallel

to the ribs. I is the moment of inertia of a T-section of width a ,

and a "^ —. The constants a , h, H, and t are defined in Fig. 2 for
H 1

a typical steel-deck-reinforced concrete slab cross section.

It is obvious from the foregoing discussion that orthotropic

plate bending theory provides, at best, only an approximate solution

for structurally orthotropic slabs with unsymmetrical ribs. Neverthe-

less, orthotropic plate bending theory will be applied in the develop-

ment of elasticity parameters for a finite element model in an attempt to

14





provide a comparably accurate finite element solution for a structurally

orthotropic steel-deck-reinforced concrete slab.

2.2 Alternative Models

The finite element model was developed by considering the typical

cross section shown in Fig. 2 spanning a 16 ft x 16 ft panel with four

simply supported edges. A representative section of the actual struc-

turally orthotropic slab is illustrated in Fig. 3(a). The models shown

in Figs. 3(b) and (c) would provide lower and upper bound solutions for

two-way flexure of the slab. The uniform thickness of such a model

would facilitate finite element discretization, however, the effects

of the steel plate must necessarily be considered by utilizing an

equivalent uniform model thickness, based upon the cross section's

transformed moment of inertia. The actual results obtained from such

an analysis would be relatively insignificant despite the fact that

they would bound the correct solution.

Figure 4 illustrates a rather sophisticated finite element

discretization utilizing 8-node bricks to model the concrete, and

plate bending elements to model the steel deck. While such a model

should provide excellent results, its complexity and expense degrade

its usefulness for general application. A comparison between this

model and the elastically orthotropic model is presented in Art. 4.2.

Modeling the structurally orthotropic slab as an isotropic plate

supported by beams representing the ribs would provide still

15





another alternative. However, correctly modeling torsional rigidity

with such a discretization could prove quite difficult. In the final

analysis, the most efficient and effective model is one in which plate

bending elements alone are utilized with appropriately modified elasticity

constants and a specified equivalent uniform thickness. Such a model simulates

the behavior of e structurally orthotropic slab by that of an equivalent

elastically orthotropic slab of uniform thickness.

2.3 Model Parameters

The modeling of a structurally orthotropic slab by an elas-

tically orthotropic slab of uniform thickness was accomplished as

follows:

a. The uncracked moment of inertia (I ) per unit width was com-

puted in the strong direction utilizing the transformed area

concept to incorporate the effect of the steel deck

b. The uncracked moment of inertia (I ) per unit width was com-

puted in the weak direction neglecting any contribution from

the steel deck or from the ribs

c. An effective moment of inertia (I ) per unit width was defined
xe '^

for the weak direction; I considers the effect of the ribs
xe

by utilizing Timoshenko's expression for the weak direction

bending rigidity (Eq. 2.11):

^xe " 12(a^-t-a"t)
^-^^

d. The modulus of elasticity of concrete, E , was modified by the

following expressions to simulate orthotropic elasticity:

16





I

E = -f^ (E ) 2.14
X I c

X

E = —^ (E ) 2 . 15
y I c

xe

e. Poisson's ratio for concrete (v ) was modified as follows:
c

I

V = -p (v ) 2.16
X I c

y

I

V =» T^ (v ) 2.17
y I c
' xe

so as to maintain the equality vE =vE =vExy yx cc

f. Orthotropic elasticity constants were computed as follows

utilizing E , E , v and v :

X y X y

2.18a
E
X

'xx 1 - V V
X y

E
y

'yy 1 - V V
X y

/v V E E
X y X y

'xy 1 - V V
X y

E E
X y

xy E + (1+2 V )E
X X y

2.19

2.20

2.21

g. An equivalent uniform slab thickness was computed as follows:

t = Vl2 I 2.21
e xe

17





In general terras, this modeling technique simulates structural

orthotropy by proportionately increasing the modulus of elasticity of

concrete to reflect effective moments of inertia in the strong and weak

direction, while incorporating an equivalent uniform thickness. This

technique does, however, possess one inconsistency in that the simulated

bending rigidity in the weak direction is relatively higher than would

be theoretically deduced. This results from the fact that both the

moment of inertia and the modulus of elasticity in the weak direction

are increased resulting in a relatively higher increase in rigidity

in the model's weak direction as compared to its strong direction. The

significance of this inconsistency is discussed later.

Troitsky's value for G (Eq. 2.10) was selected because of
xy

its general applicability to structurally orthotropic slabs and

because of the good correlation which it produced with both theoreti-

cal solutions and test results.

Uncracked section properties and material properties for the

typical section utilized in the model's development are listed in Table

1. The computation of model parameters is included in Appendix A, and

the final elastically orthotropic slab model is illustrated in Fig. 3(d)

18





3. ORTHOTROPIC PLATE ANALYSIS

For the case of a uniformly loaded, simply supported rectangular

orthotropic plate, Eq. 2.3 can be solved utilizing the Navier

method. This solution expresses the plate's deflection surface

in terms of a double trigonometric series:

1 - « « J raTTx . nrry
16 q r-, r-i sin sm —rp

w ° ^ °

2, i
—

^^^ t:^-:^ 1^ r 3.1^^^~ L L 7m* ^ ,
2m2n2

m= IOC IOC mnl-5- D H g-rg- H + rTT D
'1,3,5... n=l,3,5... \a x a^b^ b y/

Tabularized solutions are available for Eq. 3.1 for the particular case

of H = /D D . Although such a case is normally representative of
X y

elastically orthotropic plates, such as two-way reinforced concrete

slabs, it will nevertheless be applied to a structurally orthotropic

steel-deck-reinforced concrete slab utilizing the elasticity constants

computed for the finite element model parameters.

3.1 Governing Equations

For the case in which H = /D D , the deflection and the
X y

bending moments at the center of an orthotropic plate can be expressed

by the following equations:

Ck' q b*

y

19





ih-hr'JT^K^M
XX

yy X

. C /T". q

•^ XX y

where a, 0, , and 3„ are numerical coefficients given in Table 2 and

X

If the effect of transverse contraction is neglected C
xy

becomes equal to zero and Eqs . 2.11 and 2.12 can be directly applied

to calculate D and D . However, transverse contraction is considered
X y

by the finite element analysis and consequently a more appropriate

comparison should be achieved by modifying D and D as follows:

.
. E a h°

\ ' (1-v ^)(12)(a^-t+cy^t)
^'^

E I

'y (l-vJTTa,)
D =— sVt—r 3.7

A sample computation of theoretical deflections and moments

is included in Appendix B for a simply supported, 16 ft square,

orthotropic plate subjected to a uniform load of .001 ksi (144 psf).

The typical cross section shown in Fig. 2 and the total load q =» .001 ksi,
o

which is in the normal working load range, were used for all computa-

tions .

20





3.2 Summary of Results

The results of theoretical deflection and moment computations

for various aspect ratios are listed in Table 3. The comparison of

these results with values predicted by the finite element model is

presented later; however, it is important to note that the theoretical

results are in themselves approximate in nature. Although they are

assumed to be the "exact" values for model validation, the significance

of minor discrepancies must be evaluated with consideration given to

the possibility of error in the th?ioretical values.
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4. MODEL VALIDATION

Several approaches were taken to confirm the validity of

the finite element model as well as to ascertain the degree of

discretization necessary to achieve results with acceptable accuracy.

Model validation included a convergence study, comparison with an

alternate, more sophisticated model, comparison with theoretical

results, and comparison with test results. In all instances the

model was observed to have an acceptable degree of accuracy.

4. 1 Convergence Study

Figure 5 illustrates the typical slab discretization utilized

during development of the model parameters. Quarter symmetry was

utilized and the degrees of freedom at the boundaries were set

equivalent to those of simply supported edges. The discretization

in Fig. 5 includes 81 nodal points and 64-12 inch square, elastically

orthotropic plate bending elements of uniform thickness. In addition

to the discretization shown in Fig. 5, a coarser mesh (16 elements -

24 inches square) and a finer mesh (256 elements - 6 inches square)

were utilized in the convergence study.

Figure 6 shows excellent convergence towards the "exact"

center deflection as computed in Appendix B. As evidenced in

Fig. 6, the finite element model is "stiffer" than the theoretical

slab and the computed deflections are actually lower bound values.

This is as would be expected since SAP IV type VI plate bending

elements are conformable elements.
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Similarly, Fig. 7 shows very good convergence towards the

"exact" strong axis moment. Convergence is also obtained in the weak

direction; however, it is quite apparent that the "exact" value for

the weak axis moment is strongly influenced by the degree of transverse

contraction assumed in the theoretical analysis.

For the purposes of this report, it was determined that the

accuracy of the mesh illustrated in Fig. 5 was adequate, and that the

utilization of the finer mesh (at over 3 times the cost) was not

necessary. All subsequent studies are conducted utilizing 12 inch

square elements.

4.2 Comparison with Alternate Model

A comparison was made between a 12 inch square elastically

orthotropic plate bending element and the structurally orthotropic

finite element model shown in Fig. 4 primarily to determine the

accuracy of the assumed expression for G (Eq. 2.10).

The structurally orthotropic model was composed of 8-node

bricks, which represented the concrete, and isotropic plate bending

elements, which represented the steel deck. The elastically ortho-

tropic model was defined by the elasticity parameters and equivalent

thickness computed in Appendix A. A 12- inch square module of each type was

simply supported at three of its corners while a unit load was

applied at the fourth corner. The elastically orthotropic element had

a corner deflection of 0.0024166 inches while the structurally ortho-

tropic model had a corresponding deflection of 0.0024145 inches. The
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resulting error is less than 0.1% and is entirely acceptable. This com-

parison supports the validity of the assumed expression for G as

well as the overall adequacy of the elastically orthotropic model.

The cost associated with the more sophisticated 8-node brick

model was approximately ten times that of the elastically orthotropic

plate bending model. This observation further supports the selection

of the elastically orthotropic plate bending model.

4.3 Comparison with Theoretical Results

The theoretical analysis of simply supported, uniformly

loaded, rectangular orthotropic plates is discussed in Art. 3 and

sample computations are included in Appendix B. Theoretical deflec-

tions and moments were similarly calculated for various aspects ratios

and are summarized in Table 3 along with corresponding values

computed by a SAP IV finite element analysis utilizing the elastical-

ly orthotropic model previously discussed. (The parametric study,

which considers the relative effects of aspect ratio, is discussed in detail

in Art. 5). The tabulated values show excellent agreement for de-

flections and strong axis moments; however the correlation is less

than satisfactory for weak axis moments. Moreover, it is apparent

that the correlation becomes increasingly worse as the weak direction

span increases. However, it is also observed that at some aspect ratio

(between 1.33 and 1.00) an exact correlation is achieved.

If an alternate theoretical analysis is made which neglects the

effect of transverse contractions as related to weak direction moments
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(i.e., V = 0), the correlation between the finite element and the theore-

tical analysis greatly improves, particularly at larger aspect ratios.

This observation is noted in Table 3 and seems to indicate that the

relative effect of transverse contraction varies with aspect ratio and

has a much more significant effect on the weak direction moments than

on either the center deflections or the strong direction bending

moments. The consistency of all other results indicates that the

weak direction moments computed by the finite element analysis are

"more correct" than the approximate theoretical values. This observation

is based upon the assumption that the relative significance of transverse

contraction will be appropriately considered by the numerical finite element

solution for a particular aspect ratio. The theoretical solution, on the

other hand, is directly tied to an assumed degree of transverse contraction,

and does not necessarily apply "exactly" to a structurally orthotropic plate.

4.4 Comparison with Test Results

Although this investigation was primarily analytical in nature

an effort was made to correlate results predicted by the finite ele-

ment model with available test results for steel-deck-reinforced

concrete slabs.

Figure 8 illustrates actual results obtained by Schuster and Ekberg^ ^

during one of their numerous tests on steel-deck-reinforced concrete

slabs subjected to one-way bending. The test specimen was modeled

utilizing the parameters previously discussed and the analytical

results were also plotted in Fig. 8. An additional analysis was
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conducted utiliziag the theoretical cracked moment of inertia for I ;

y

computing I based upon the cracked slab thickness; and letting

I = I . The plotted results indicate excellent correlation in the
xe X

uncracked region and emphasize the effect of cracking and subsequent

shear bond failure on the load carrying capacity of the slab.

Figure 9 compares the predicated and actual behavior of one

of Porter and Ekberg's steel-deck-reinforced slabs subjected to

two-way bending. The particular slab shown had no supplementary rein-

forcement and was simply supported on all four edges. The predicted

and actual load vs. deflection curves show excellent agreement in the

uncracked region of the initial load cycle. However, the effects of

cracking are once again apparent in the final load cycle. Predicted

deflections are actually lower bound values in the uncracked region

as was indicated by the convergence study discussed earlier.
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5. PARAMETRIC STUDY

A limited parametric study was conducted utilizing the pre-

viously discussed finite element model to examine the effects of

various aspect ratios on the two-way flexural behavior of steel-deck-

reinforced concrete slabs. The relative span lengths for the strong

versus the weak direction of the orthotropic slab were of particular

interest. Steel-deck-reinforced concrete slabs, when constructed as

one-way systems, routinely have their ribs spanning the shorter

direction, and current research into two-way behavior has

generally followed this practice. In addition to aspect ratio,

simply supported and fixed edge boundary conditions were examined.

5. 1 Purpose and Scope

The relative distribution of bending moments and stresses in

the two orthogonal directions corresponding to the strong and weak

axes of a steel-deck-reinforced concrete slab is a function of aspect

ratio, edge boundary conditions and the section and material properties

of the particular slab in question. A finite element parametric

study was conducted to quantify the effects of aspect ratio as well

as the effect of simply supported versus fixed edge boundary conditions

A typical steel-deck reinforced concrete slab section (Fig. 2

)

was selected and a finite element analysis was performed for each of

the slab aspect ratios shown in Fig. 10. The relative span lengths

were chosen so as to represent typical spans utilized in one-way steel

deck-reinforced concrete slab construction as well as to represent
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typical spans for alternate floor systems constructed of reinforced

or precast concrete.

It is hypothesized that the optimum aspect ratio for a steel-

deck-reinforced concrete slab is one in which the maximum concrete

compressive stresses are equal in the main orthogonal directions of

the slab. An expression for optimum aspect ratio is developed, based

upon uncracked, elastic behavior, and is compared with the results of

the parametric study.

5.2 Results

Deflection and moment coefficients are compared with slab aspect

ratio in Figs. 11 and 12 respectively. Nondimensionalized coeffi-

cients for deflections and moments were developed based upon the

corresponding expressions for one-way flexural behavior. In general

terms, the coefficients are defined as follows:

184 A FT
DEFLECTION COEFFICIENT = a c.j. ^ ^ ^^^

w b

where A = center deflection; and

MOMENT COEFFICIENT = r^ =
p- 5.2

where M and L correspond to the appropriate weak or strong direction

values. As shown in Figs. 11 and 12, the slab ribs span in the "b"

direction (strong direction), and an aspect ratio of zero corresponds

to one-way bending. For aspect ratios less than one the ribs span

in the short direction and conversely, the ribs span in the long direc-

tion for aspect ratios greater than one.
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Figure 11 indicates that for a given span "b", a significant

reduction in maximum deflection can be realized by considering the

effects of two-way flexural action, particularly in the case of

simply supported edges. Although such reduction is more pronounced

for the larger aspect ratios, a 257o reduction in maximum deflections

is predicted for a simply supported slab with a 0.75 aspect ratio.

A 12'xl6' slab with ribs spanning 12 feet^ as shown in Fig. 10, has

an aspect ratio of 0.75 and is a typical panel used in current designs;

however, the added benefit of two-way flexural action is generally

neglected when computing the deflection of such a slab.

If an isotropic slab were considered, the plots of weak and

strong axis moment coefficients shown in Fig. 12 would intersect at

an aspect ratio of 1.0, and for the case of simple supports the

maximum biaxial compressive stress would be balanced at the center.

Assuming that an optimum two-way steel-deck-reinforced concrete slab

design will also attempt to balance the maximum biaxial compressive

stress in the concrete, an expression for the optimum aspect ratio

was derived in Appendix C and is expressed as follows:

Va/opt
'^
N S \n\i }

x ^xx

where '^ and p, refer to the moment coefficients for the respective

strong and weak direction moments. A trial and error solution for

( — ) utilizing values plotted in Fig. 12 is also shown in
\a/opt

Appendix C for the simply supported case. A similar solution for fixed

edges would require optimization with respect to either positive or

negative bending moments.
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The optimum aspect ratio for the simply supported case for the

section shown in Fig. 2 was found to be approximately 1.1. This value

indicates that steel-deck- reinforced concrete slabs subjected to two-way

bending respond more efficiently if their aspect ratio is greater than

one; that is if the ribs span in the longer direction. As mentioned

previously, it is current practice to generally design steel-deck-rein-

forced concrete slabs as simple, one-way spans with the ribs spanning

the short direction. The potential advantages of utilizing two-way

simple or continuous spans are quite apparent from the comparisons

illustrated in Fig. 12.
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6. CONCLUSIONS AND RECOMMENDATIONS

The concept of designing steel-deck-reinforced concrete slabs

as two-way flexural systems is technically feasible and suggests

strong potential for significant economic advantages. Although this

conclusion is drawn based upon a simplistic uncracked, linear elastic

analysis, it is reasonable to assume that the same behavioral trends

will persist in the cracked region and that the two-way steel-deck-

reinforced concrete slab will performed consistently better than its

one-way counterpart. Although Porter observed predominately one-

way action of two-way steel-deck-reinforced concrete slabs at ultimate

load, significant two-way action was observed at working load levels

despite cracking of the slab cross section. Such behavior suggests

the possibility of developing working stress design procedures

utilizing linear elastic analysis of the cracked cross section at

the working load level. Such analysis techniques are currently

utilized in the design of one-way steel-deck-reinforced concrete slab

systems. However, two-way design of such slab systems will necessarily

require the utilization of supplementary reinforcement transverse and

possibly parallel to the steel deck ribs. As Porter observed, such

reinforcement, placed directly on the steel deck resulted in increased

ultimate capacity when the slab was subjected to two-way bending. Supple-

mentary reinforcement is required not only to resist bending moments,

but also to maintain the same relative stiffness between the weak and

strong axes of the cracked and uncracked cross section of the steel-

deck-reinforced concrete slab.
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As discussed in the parametric study, a two-way steel-deck rein-

forced slab will perform more efficiently if the ribs span in the

longer direction. This observation and the theoretical prediction

for optimum aspect ratio must necessarily be confirmed by actual

experimentation.

The elastically orthotropic finite element model was found to

perform both effectively and efficiently with a relatively coarse

discretization. However, the model was particularly sensitive to

the expression utilized for the orthotropic shear modulus G and
xy

actual testing is required to further validate all model parameters.

As mentioned in Art. 2.3, the model includes an "artificially high"

bending rigidity in the weak direction; however, correlation with

theoretical and experimental results supports the validity of the

parameters which contribute to the model's weak direction bending

ridigidy

.

The difficulties associated with premature shear bond failure

as well as the structural adequacy of the steel-decking during the

construction phase must necessarily be considered in any refined

development of the concept of designing steel-deck-reinforced concrete

slabs as two-way flexural systems. The relative shear-bond and

flexural behavior of interior versus exterior floor panels in a

general two-way framing scheme would be of particular interest.

Although the full benefits of two-way flexural behavior may

be significantly limited by various physical or practical constraints,
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the relative advantages of two-way versus one-way design of steel-

deck-reinforced concrete slabs are quite apparent. Moreover, the

increased efficiency of a two-way steel-deck-reinforced concrete

slab, cocnbined with the other numerous advantages inherent in this

construction system, will significantly enhance its acceptability for

utilization in multiunit residential facilities.

A considerable amount of additional research is required before

a generally acceptable two-way design procedure could be promulgated.

The analytical techniques developed in this report must be validated

against specific test results and refined as necessary. A full scale

testing program, which parallels and expands upon the parametric

study included in this report, is also imperative. In particular, the

following parameters should be examined:

a. Concrete weight and strength

b. Steel deck cross section and embossment pattern

c. Slab and deck thickness

d. Boundary conditions

e. Aspect ratio, span length, and rib direction

f. Loading

g. Supplementary reinforcement

The required amount of supplementary reinforcement will significantly

effect both the technical and economic feasibility of fully developing

two-way flexural action, and should receive careful attention during

the testing phase. Additionally, trial designs should be prepared for

various sections and general economic comparisons should be made with
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alternate floor systems of equivalent capacity to ascertain both the

physical and economical efficiency of a steel-deck-reinforcement concrete

slab.

Composite structural systems, in general, offer increased load

carrying efficiency by utilizing each component material in its most

effective manner and to its fullest potential. The steel-deck-rein-

forced concrete slab is currently under-utilized as a structural sys-

tem; however, a much greater efficiency could be achieved by fully

investigating and eventually taking advantage of two-way flexux-al

behavior.
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7. NOMENCLATURE

C ,C ,C plane stress elasticity constants
xx' yy' xy

D.D ,D flexural rigidity constants
X y

D torsional rigidity constant
xy

E,E ,E modulus of elasticity (concrete; steel)

E ,E orthotropic modulus of elasticity
X y

G orthotropic shear modulus
xy

H effective torsional rigidity constant; total steel-deck-

reinforced slab depth

I transformed uncracked moment of inertia

I transformed uncracked strong axis moment of intertia
y

per unit width

I uncracked weak axis moment of inertia per unit width of
X

slab of depth h

I effective uncracked weak axis moment of inertia per unit
xe

width

L span length

moment per unit width

center moments per unit width for simply supported edges

center moments per unit width for fixed edges

edge moments per unit width for fixed edges

elastic section modulus

SS simple support

a weak direction span

a. modular width of steel-deck-reinforced concrete slab section
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M,M ,M
xx' yy

m",
XX'

,M
yy

XX

XX yy

S ,S
y X





b strong direction span

b/a aspect ratio

f ,f concrete stress
ex cy

f ultimate concrete strength
c

f yield stress of steel
y

h total depth of concrete above steel deck ribs

q,q uniform load distribution (plate bending equations)
o

t rib thickness

t effective uniform thickness of the elastically ortho-
e

tropic slab model

t thickness of the steel deck
s

w deflection surface; uniform load per unit area

w weight of concrete
c

x,y global coordinate axes

A center deflection

5 finite summation

a ratio of h/H; deflection coefficient for orthotropic

plate bending

3,,B^ moment coefficients for orthotropic plate bending

V coefficient of torsional rigidity

V shear strain
xy

6 deflection coefficient

e jS linear strain
XX yy

u.LL ,LL moment coefficients
'^^xx '^yy

v,v ,v Poisson' s ratio (concrete; steel)
c s

V ,v orthotropic Poisson ratios
X y

'^
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a ,a normal stress
XX yy

T shear stress (equals T for an orthotropic plate with
xs xy

principal axes of orthotropy coinciding with the x and y

axes of the local coordinate system)
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8. TABLES
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Table 1 Section and Material Properties

Property Value

I 278.7 in*

I
y

23.2 in*/in

I
X 3.57 in*/in

I
xe 4.63 in* /in

S
y

7.864 in=/in

s
X 2.427 in^/in

c
3000 psi

w
c

150 pcf

E
c

3320 ksi

V
c

0.2

f
y

36 ksi

E
s

29,500 ksi

V
s

0.3

t
s

0.0359 in (20 gage)
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Table 2 Constants for a Simply Supported Rectangular

(10)Orthotropic Plate with H = /D D
^ y

e a ^1 h

1.0 0.00407 0.0368 0.0368

1.1 0.00488 0.0359 0.0477

1.2 0.00565 0.0344 0.0524

1.3 0.00639 0.0324 0.0597

1.4 0.00709 0.0303 0.0665

1.5 0.00772 0.0280 0.0728

1.6 0.00831 0.0257 0.0785

1.7 0.00884 0.0235 0.0837

1.8 0.00932 0.0214 0.0884

1.9 0.00974 0.0191 0.0929

2.0 0.01013 0.0174 0.0964

2.5 0.01150 0.0099 0.1100

3.0 0.01223 0.0055 0.1172

4.0 0.01282 0.0015 0.1230

5.0 0.01297 0.0004 0.1245

OS 0.01302 0.0000 0.1250
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ĈO CO >.
QJ O >,
S S

t^ CM in en v£>

!-i Cv4 CM i<00 •5<00

O r^ 00 *r- •J<vO

QJ » *

x: o o d dH

J< <J- r~. <f <i-
O U-) CO r-^ o
1-1 ON 0^ o o
4J • • • »

d ^-v CO o O 1—1 T—

1

o d Pi
T-< 1-1

u ~-^

u D-
QJ tA m CNJ <!• in
>-i ^ Pu CM 1—1 00 <}
•H 1 < r^ r- 00 enQ d CO • • •

i-< I—

1

CN CO -*
ao ^^
d
o CO X
(-1 O X
jj Sw >, as OO CM \£>

^ o <f en CM
o 00 r^ 00 en
QJ • • • 9

s: 1—1 CM en <tH

54 en en in o
O v£) CTn 00 o
1-1 0^ 0^ c^^ o
4J • « • *

CO O o o f-H
^-^ Oi
d
1-1

"-^

CO r^ LPl CM r^
d P- <J- en CM in
o <: 00 en C7^ i-H

•r-l CO o T—

1

I—

1

CM
4J . .

O d o o O
QJ

I—

1

M-l

QJ

Q >, o in <! in
I-l 00 <f <^ <!•

o 00 en CO 1—1

QJ o I—

1

I—

1

r-l

jd • .

H o o o o

4-1 C)
^-^ en o p^ o

O 1-( CO en o vO o
<U 4-1 ^, en o vD m
CL CCi XI • « • «

CO a; v-' I—

1

I—

1

O o
<

o

CO >>
o >,
S

QJ

4-1

V
QJ

1—1

60
CU

d

(U

V4
(0

d
o
1-1

u
CJ

CO

u
4J
d
o
u

0)

CO

1^

4)

>
CO

d
CO

!-<

4J

M-l

O

O
QJ
VH
IW
QJ

>, XJ

O^ !-i QJ

< O S-4

CO QJ o
r^ QJ
4J

4J

CO

QJ

x:

M-l

00

00

in

en
m
CTi

o
n

o
1-1

ij
CO

u

CM
00
CM

CO >, CO >,

oo
m

CO

XI

CO

41





9. FIGURES
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steel Decking

Section

Plan View

(a) One -Way Steel- Deck - Reinforced Concrete Slab

I

h

Plan View

Partition

MMmmM

Section

(b) Two-way Flat Plate Concrete Slab

Fig. 1 Alternate Conventional Floor Systems
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12" == ai

6" X 6"

Fig. 2 Typical Cross-Section
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(a) Actual Slab - Structurally Orthotropic

( b ) Lower Bound ( c ) Upper Bound

(d) Slab Model - Elastically Orthotropic

Fig. 3 Model Development
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43 - Nodal Points

12 - 8 - Node Bricks (concrete)

12 - Plate Bending Elements (steel deck)

Fig. 4 Structurally Orthotropic Finite Element Model
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16'

CD

- Quarter Symmetry

Utilized in Model

Discretization

- 81 Nodal Points

- 64 Plate Bending Elements

1'

CD

@
CO

1

8® 12"= 96"

(JH

(L

Fig. 5 Typical Finite Element Model Discretization
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Maximum Moments vs. Element Size
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Fig. 7 Convergence Study - Moments
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Load vs. Centerline Deflection
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T
Section A-A

Test Data
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Uncracked

• SAP 12" Model
Cracked

0.2 0.4 0.6

A (L/IN.

0.8 .0

Fig. 8 Comparison of Model and Test Results (One-way Bending)
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Load vs. Center Deflection

Porter a Ekberg Two- Way Slab No. 3

a.

Typical Section

/
/

/

Final Load
Cycle

Test Results

SAP Model
Uncracked

^CENTEr/'N.

Fig. 9 Comparison of Model and Test Results (Two-way Bending)
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Fig. 10 Aspect Ratio Parametric Study
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10. APPENDICES

55





APPENDIX A: COMPUTATION OF MODEL PARAMETERS

I = 3.57 in*/ia
X

I = 23.2 in*/in
y

E = 33(w )^*^/r' = 3320 ksi
c c c

V = 0.2 (assumed)
c

a,h® ,._ .,3
I = 1 12(3. 5r , .. .4/.xe T77-—::—STT = —

;; ^T' ^.5 :: = 4.63 m /in
12(a^-t-c. t)

i2(i2-3f(-^) (3))

E = -7^ (E ) = 4^ (3320) = 4306 ksi
X I c 3.57

X

E = —^ (E ) = y^ (3320) = 16636 ksi
y I c 4.63' xe

V = -p (v ) = -If^ (0.2) = 0.0399
x I C ZJ ./

y

\=7^ (^c)=lii (0-2) =0.1542
•^ xe

^ ^x 4306 /q-5-^ v •

^xx ' 1-v V " 1-.0399(.1542) ~ '^^^^ ^^^
X y

16636 -,^_^ ,
.= 16739 ksi

yy 1-v V 1-. 0399 (.1542)
X y

'^\^y^y^x _ / (0. 1542) (0.0399) (16636) (4306~)

xy " 1-v V " 1-. 0399 (.1542)
x y

C = 668 ksi
xy
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^ ^x^V 4306(16636)
'xy

" E + (l+2v ) E
X X -V 4306 + ^l+2(.0399)Vl6636)

G = 3217 ksi
xy

t = ^/n^ = V 12 (4. 63) = 3.816 in.
e xe
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APPENDIX B: COMPUTATION OF THEORETICAL DEFLECTIONS AND MOMENTS

a = b = 16 ft = 192 In. (simply supported edges)

q = 0.001 ksi (144 psf)
o

C = 4333 ksi
XX

E = E = 3320 ksi
c

C = 16739 ksi
yy

V = 0.0399
x

C = 668 ksi
xy

V = 0.1542
y

E a^h°
3320 (12) (3.5)^

X
'

(l-v;)(12)(a^-t+o^t) =
(1.0.1542= )(12)(l2-3-f{^)%3))

D = 15761 in-kip
X ^

^ ^ E I 3320 (278.7) _ __.-. . , .

^ =
(l-v^)(a,) - (1-.0399^)(12) " ^^^^^ ^^"^^P

D
- 1 4 / _Z _ 121 4 /77230

® " b V D "192 a/i5761
X

e = 1.488

From Table 1: a = 0.007 644

3^ = 0.028276

^2 = 0.072044

,4
^ ^o 0.007644 (.001) (192)^

^ ° D 77230
y

XX V^2 ^1 C V D J^o
yy X

w = 0.1345 in.
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"xx
= (0-0"044 + 0.028276(^)7SI|) .ooi (192;

M =2.748 in-kip/in
XX

C / D , q a^

{h-hfJf)-^.M
yy XX y

M^^ - (0.023276 . 0.07204<^)Jl) ^^^LJ^^

M = 0.825 in-kip/in
yy

Note: If transverse contractions are neglected (v = v =» C = 0),
X y xy

deflections and moments are similarly computed as follows:

w = 0.1361 in

M = 2.684 in-kip/in

M =» 0.688 in-kip/in
yy
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APPENDIX C: OPTI^fUM ASPECT RATIO (see Fig. 12)

For uncracked, linear elastic behavior:

M M
f =-^ f =-fS (1)
ex S cy S

X y

Let f = f ; therefore
ex ey

M M
-n. = ^££ (2)
S S
X y

From Eq. 5.2:

M =
li w L^ (3)

li w a u w b

Therefore -^ = -^ (4)

X y

After simplif ieation:

b> / !l fc\
a/opt V S Vll /

X XX
5.3

A trial and error solution for the optimum aspect ratio for a

rectangular, simply supported slab with typical section as shown in

Fig. 2 is included hereafter:

b _ /7.864 /^yy
a V2.427 Vp

'^xx

b = 1 o /!:j2:= 1.8
a N (1

XX

'^xx

60





Aspect Ratio Computed from Computed from

(b/a) Eq. (5) Fig. 12

1.00 0.309 0.262

2.00 1.235 4.114

1.50 0.694 1.310

1.33 0.594 0.825

1.25 0.482 0.660

1.10 0.373 0.377
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